If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+49t=0
a = -16; b = 49; c = 0;
Δ = b2-4ac
Δ = 492-4·(-16)·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-49}{2*-16}=\frac{-98}{-32} =3+1/16 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+49}{2*-16}=\frac{0}{-32} =0 $
| 1/2x=4x−21 | | -6x-10x+1=-9 | | 0.18(y-7)+0.08y=0.14-2.1 | | 1/3m=7=12 | | 1,8x+0,7X-x=30 | | 2x+9=1/5x | | 68=(1/5)(20x+50)+2 | | 8x+3x+5=5 | | x=94.04/2 | | 9x+5=25-x | | 5x+6=1/4 | | 2x=94.04 | | 4=h+2/3 | | 2m-9=6+7m | | 1.6=4^x | | (5p-6)÷7=(3p-5)÷4 | | 7-2d=19 | | -2(6x-1)+2x=4(x+2) | | -4(n-12)=42 | | 1.3x+x=725 | | x+(x+5)+((x+5)+4)=29 | | 58/90x=-52/90 | | ∣2x+4∣−1=7 | | (15y+2)=45.46 | | 4x²-22x+10=0 | | 3.23=16-(2z-4) | | .025(x+2)=2.81 | | 70x+27=12x-25 | | 42=-7(z-) | | 90=5u+15 | | 7/9x+3/10=2/15x-5/18 | | x+(x+2)+((x+2)+4)=29 |